

Training European Experts in Multilevel Bioimaging, Analysis and Modelling of Vertebrate Development and Disease

www.ImageInLife.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721537

> Start date : January 2017 End date: December 2020

Participants

Joining their forces, 11 leading European research groups and 6 partner organizations from 7 EU member states decided to educate the next generation of imagers of the physiology and pathology of biological systems through :

- The use of small animals at early developmental stages to image simultaneously the behaviour of all cells within a living animal.
- New fluorescent markers to reveal the behaviour of individual cells.
- New microscopes to get better images with cellular or subcellular resolution within whole animals.
- Dedicated mathematical tools to analyse and to derive models of cellular behaviors.
- New solutions to address medical and societal challenges.

Main objectives:

- Use different vertebrate species to study early cellular behaviours
- Master the whole pipeline
- $\circ~$ Bring this science to the industry

Marie-Curie Fellows

14 PhD students participate in the **ImageInLife** research and training programme. They all conduct original research projects dedicated to imaging vertebrates at cellular or subcellular levels. Network-wide workshops and transfers between research teams in the network will give them excellent training opportunities and enhance their career prospects.

Follow ImageInLife on <u>Twitter</u> and on Facebook !

For more information check our website: www.imageinlife.eu/

This document reflects the author's view and the European Community is not liable for any use that may be made of the information contained herein

Marie Skłodowska-Curie Actions